关于mmap()函数的用户和驱动的一点总结

news/2024/7/20 15:58:59 标签: 内存管理
前言: 内存映射,简而言之就是将用户空间的一段内存区域映射到内核空间,映射成功后,用户对这段内存区域的修改可以直接反映到内核空间,同样,内核空间对这段区域的修改也直接反映用户空间。那么对于内核空间<---->用户空间两者之间需要大量数据传输等操作的话效率是非常高的。

以下是一个把普遍文件映射到用户空间的内存区域的示意图。
图一:

用户空间:

mmap函数是unix/Linux下的系统调用,详细内容可参考《Unix Netword programming》卷二12.2节。
mmap系统调用并不是完全为了用于共享内存而设计的。它本身提供了不同于一般对普通文件的访问方式,进程可以像读写内存一样对普通文件的操作。而Posix或系统V的共享内存IPC则纯粹用于共享目的,当然mmap()实现共享内存也是其主要应用之一。
mmap系统调用使得进程之间通过映射同一个普通文件实现共享内存。普通文件被映射到进程地址空间后,进程可以像访问普通内存一样对文件进行访问,不必再调用read(),write()等操作。mmap并不分配空间, 只是将文件映射到调用进程的地址空间里(但是会占掉你的 virutal memory), 然后你就可以用memcpy等操作写文件, 而不用write()了.写完后,内存中的内容并不会立即更新到文件中,而是有一段时间的延迟,你可以调用msync()来显式同步一下, 这样你所写的内容就能立即保存到文件里了.这点应该和驱动相关。 不过通过mmap来写文件这种方式没办法增加文件的长度, 因为要映射的长度在调用mmap()的时候就决定了.如果想取消内存映射,可以调用munmap()来取消内存映射

[cpp]  view plain  copy
  1. void * mmap(void *start, size_t length, int prot , int flags, int fd, off_t offset)  



mmap用于把文件映射到内存空间中,简单说mmap就是把一个文件的内容在内存里面做一个映像。映射成功后,用户对这段内存区域的修改可以直接反映到内核空间,同样,内核空间对这段区域的修改也直接反映用户空间。那么对于内核空间<---->用户空间两者之间需要大量数据传输等操作的话效率是非常高的。
start:要映射到的内存区域的起始地址,通常都是用NULL(NULL即为0)。NULL表示由内核来指定该内存地址 

length:要映射的内存区域的大小 
prot:期望的内存保护标志,不能与文件的打开模式冲突。是以下的某个值,可以通过or运算合理地组合在一起 
PROT_EXEC //页内容可以被执行 
PROT_READ //页内容可以被读取 
PROT_WRITE //页可以被写入 
PROT_NONE //页不可访问 
flags:指定映射对象的类型,映射选项和映射页是否可以共享。它的值可以是一个或者多个以下位的组合体 
MAP_FIXED :使用指定的映射起始地址,如果由start和len参数指定的内存区重叠于现存的映射空间,重叠部分将会被丢弃。如果指定的起始地址不可用,操作将会失败。并且起始地址必须落在页的边界上。 
MAP_SHARED :对映射区域的写入数据会复制回文件内, 而且允许其他映射该文件的进程共享。 
MAP_PRIVATE :建立一个写入时拷贝的私有映射。内存区域的写入不会影响到原文件。这个标志和以上标志是互斥的,只能使用其中一个。
MAP_DENYWRITE :这个标志被忽略。 
MAP_EXECUTABLE :同上 
MAP_NORESERVE :不要为这个映射保留交换空间。当交换空间被保留,对映射区修改的可能会得到保证。当交换空间不被保留,同时内存不足,对映射区的修改会引起段违例信号。 
MAP_LOCKED :锁定映射区的页面,从而防止页面被交换出内存。 
MAP_GROWSDOWN :用于堆栈,告诉内核VM系统,映射区可以向下扩展。 
MAP_ANONYMOUS :匿名映射,映射区不与任何文件关联。 
MAP_ANON :MAP_ANONYMOUS的别称,不再被使用。 
MAP_FILE :兼容标志,被忽略。 
MAP_32BIT :将映射区放在进程地址空间的低2GB,MAP_FIXED指定时会被忽略。当前这个标志只在x86-64平台上得到支持。 
MAP_POPULATE :为文件映射通过预读的方式准备好页表。随后对映射区的访问不会被页违例阻塞。 
MAP_NONBLOCK :仅和MAP_POPULATE一起使用时才有意义。不执行预读,只为已存在于内存中的页面建立页表入口。 

fd:文件描述符(由open函数返回) 

offset:表示被映射对象(即文件)从那里开始对映,通常都是用0。 该值应该为大小为PAGE_SIZE的整数倍 

返回说明 
成功执行时,mmap()返回被映射区的指针,munmap()返回0。失败时,mmap()返回MAP_FAILED[其值为(void *)-1],munmap返回-1。errno被设为以下的某个值 
EACCES:访问出错 
EAGAIN:文件已被锁定,或者太多的内存已被锁定 
EBADF:fd不是有效的文件描述词 
EINVAL:一个或者多个参数无效 
ENFILE:已达到系统对打开文件的限制 
ENODEV:指定文件所在的文件系统不支持内存映射 
ENOMEM:内存不足,或者进程已超出最大内存映射数量 
EPERM:权能不足,操作不允许 
ETXTBSY:已写的方式打开文件,同时指定MAP_DENYWRITE标志 
SIGSEGV:试着向只读区写入 
SIGBUS:试着访问不属于进程的内存区 

[cpp]  view plain  copy
  1. int munmap(void *start, size_t length)   

start:要取消映射的内存区域的起始地址 
length:要取消映射的内存区域的大小。 
返回说明 
成功执行时munmap()返回0。失败时munmap返回-1.
int msync(const void *start, size_t length, int flags); 

对映射内存的内容的更改并不会立即更新到文件中,而是有一段时间的延迟,你可以调用msync()来显式同步一下, 这样你内存的更新就能立即保存到文件里
start:要进行同步的映射的内存区域的起始地址。 
length:要同步的内存区域的大小 
flag:flags可以为以下三个值之一: 
MS_ASYNC : 请Kernel快将资料写入。 
MS_SYNC : 在msync结束返回前,将资料写入。 
MS_INVALIDATE : 让核心自行决定是否写入,仅在特殊状况下使用

驱动空间:

3.1、基本过程
首先,驱动程序先分配好一段内存,接着用户进程通过库函数mmap()来告诉内核要将多大的内存映射到内核空间,内核经过一系列函数调用后调用对应的驱动程序的file_operation中指定的mmap函数,在该函数中调用remap_pfn_range()来建立映射关系。
3.2、映射的实现
首先在驱动程序分配一页大小的内存,然后用户进程通过mmap()将用户空间中大小也为一页的内存映射到内核空间这页内存上。映射完成后,驱动程序往这段内存写10个字节数据,用户进程将这些数据显示出来。
驱动程序:

[cpp]  view plain  copy
  1. #include <linux/miscdevice.h>   
  2. #include <linux/delay.h>   
  3. #include <linux/kernel.h>   
  4. #include <linux/module.h>   
  5. #include <linux/init.h>   
  6. #include <linux/mm.h>   
  7. #include <linux/fs.h>   
  8. #include <linux/types.h>   
  9. #include <linux/delay.h>   
  10. #include <linux/moduleparam.h>   
  11. #include <linux/slab.h>   
  12. #include <linux/errno.h>   
  13. #include <linux/ioctl.h>   
  14. #include <linux/cdev.h>   
  15. #include <linux/string.h>   
  16. #include <linux/list.h>   
  17. #include <linux/pci.h>   
  18. #include <linux/gpio.h>   
  19.   
  20.   
  21. #define DEVICE_NAME "mymap"   
  22.   
  23.   
  24. static unsigned char array[10]={0,1,2,3,4,5,6,7,8,9};   
  25. static unsigned char *buffer;   
  26.   
  27.   
  28. static int my_open(struct inode *inode, struct file *file)   
  29. {   
  30. return 0;   
  31. }   
  32.   
  33.   
  34. static int my_map(struct file *filp, struct vm_area_struct *vma)   
  35. {   
  36. unsigned long page;   
  37. unsigned char i;   
  38. unsigned long start = (unsigned long)vma->vm_start;   
  39. //unsigned long end = (unsigned long)vma->vm_end;   
  40. unsigned long size = (unsigned long)(vma->vm_end - vma->vm_start);   
  41.   
  42. //得到物理地址   
  43. page = virt_to_phys(buffer);   
  44. //将用户空间的一个vma虚拟内存区映射到以page开始的一段连续物理页面上   
  45. if(remap_pfn_range(vma,start,page>>PAGE_SHIFT,size,PAGE_SHARED))//第三个参数是页帧号,由物理地址右移PAGE_SHIFT得到   
  46. return -1;   
  47.   
  48. //往该内存写10字节数据   
  49. for(i=0;i<10;i++)   
  50. buffer[i] = array[i];   
  51.   
  52. return 0;   
  53. }   
  54.   
  55.   
  56. static struct file_operations dev_fops = {   
  57. .owner = THIS_MODULE,   
  58. .open = my_open,   
  59. .mmap = my_map,   
  60. };   
  61.   
  62. static struct miscdevice misc = {   
  63. .minor = MISC_DYNAMIC_MINOR,   
  64. .name = DEVICE_NAME,   
  65. .fops = &dev_fops,   
  66. };   
  67.   
  68.   
  69. static int __init dev_init(void)   
  70. {   
  71. int ret;   
  72.   
  73. //注册混杂设备   
  74. ret = misc_register(&misc);   
  75. //内存分配   
  76. buffer = (unsigned char *)kmalloc(PAGE_SIZE,GFP_KERNEL);   
  77. //将该段内存设置为保留   
  78. SetPageReserved(virt_to_page(buffer));   
  79.   
  80. return ret;   
  81. }   
  82.   
  83.   
  84. static void __exit dev_exit(void)   
  85. {   
  86. //注销设备   
  87. misc_deregister(&misc);   
  88. //清除保留   
  89. ClearPageReserved(virt_to_page(buffer));   
  90. //释放内存   
  91. kfree(buffer);   
  92. }   
  93.   
  94.   
  95. module_init(dev_init);   
  96. module_exit(dev_exit);   
  97. MODULE_LICENSE("GPL");   
  98. MODULE_AUTHOR("LKN@SCUT");   


应用程序例子:
#include <unistd.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <fcntl.h> 
#include <linux/fb.h> 
#include <sys/mman.h> 
#include <sys/ioctl.h> 

#define PAGE_SIZE 4096 


int main(int argc , char *argv[]) 
int fd; 
int i; 
unsigned char *p_map; 

//打开设备 
fd = open("/dev/mymap",O_RDWR); 
if(fd < 0) 
printf("open fail\n"); 
exit(1); 

//内存映射 
p_map = (unsigned char *)mmap(0, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED,fd, 0); 
if(p_map == MAP_FAILED) 
printf("mmap fail\n"); 
goto here; 

//打印映射后的内存中的前10个字节内容 
for(i=0;i<10;i++) 
printf("%d\n",p_map[i]); 


here: 
munmap(p_map, PAGE_SIZE); 
return 0; 


http://www.niftyadmin.cn/n/1736491.html

相关文章

I2C总线的EEPROM(24C08)Linux驱动

基于Linux 2.6.30内核 符合Linux驱动架构模型 针对24C08的Page读写做了优化。 完全模拟文件读写方式&#xff0c;支持lseek操作。 这个代码中&#xff0c;包含了设备的地址&#xff0c;在i2c_add_driver时会去探测该地址上是否有设备。 但通常&#xff0c;做板级开发时&…

【人工智能与深度学习】图卷积网络 I

【人工智能与深度学习】图卷积网络 I 传统卷积神经网络什么是维度诅咒?有关卷积神经网络的主要假设::图域数据域图域图域的启发性示例图的定义和特征传统卷积网络中的卷积卷积我们如何定义卷积?我们可以把模板匹配延伸到图吗?图卷积光谱图卷积网络步骤 1 : 图拉普拉斯步骤2…

bootloader(lk----kernel)

Pre-loader 运行在ISRAM&#xff0c;待完成 DRAM 的初始化后&#xff0c;再将lk载入DRAM中&#xff0c;最后通过特殊sys call手段实现跳转到lk的执行入口&#xff0c;正式进入lk初始化阶段. 一、lk执行入口&#xff1a; 位于.text.boot 这个section(段)&#xff0c;具体定义位置…

Linux设备驱动简析—基于I2C的E2PROM驱动

/* *By Neil Chiao ( neilchiao at gmail.com) *转载请注明出处&#xff1a; neilengineer.cublog.cn*/ 1、I2C总线原理 I2C是一种常用的串行总线&#xff0c;由串行数据线SDA 和串线时钟线SCL组成。 系统的I2C模块分为I2C总线控制器和I2C设备。I2C总线控制器是CPU提…

I2C驱动的4个数据结构间的关系

一、i2c_driver, i2c_client, i2c_adapter, i2c_algorithm 这4个数据结构的作用及关系 1.i2c_adapter 与 i2c_algorithm i2c_adapter 对应物理上一个适配器&#xff0c;而i2c_algorithm对应一套通信算法。 I2C适配器需要i2c_algorithm中提供的通信函数&#xff0c;来控制适配…

bootloader过程(preloader----lk)

1、bootloader到kernel启动总逻辑流程图 ARM架构中&#xff0c;EL0/EL1是必须实现&#xff0c;EL2/EL3是选配&#xff0c;ELx跟层级对应关系&#xff1a; EL0 -- app EL1 -- Linux kernel 、lk EL2 -- hypervisor&#xff08;虚拟化&#xff09; EL3 -- ARM trust firmware 、p…

MTK lcm 驱动加载流程 android M

直有一种强迫症&#xff0c;不把整个流程屡清楚就是蓝瘦香菇。做项目读博客多了&#xff0c;也就慢慢地搞清楚了。 安卓系统从power键按下释放&#xff0c;到lcm驱动显示&#xff0c;整个驱动的加载流程as follows&#xff1a; lk阶段&#xff0c;还是先执行main.c (vendor\ven…

MTK codegen.dws文件---GPIO口的定制

如果需要定制GPIO口呢&#xff0c;需要使用bootable/bootloader/lk/script/dct/DrvGen.exe工具&#xff0c;点击Open&#xff0c;选择mediatek/custom/project_dir/kernel/dct/dct/codegen.dws文件&#xff0c;点击Edit&#xff0c;将出现如图所示的一个窗口&#xff1a;注&…